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1 Introduction

In recent years, Natural Language Processing (NLP) has
achieved significant improvements thanks to the introduc-
tion of neural networks. For instance, BERT (Devlin et al.,
2018) achieved state-of-the-art performance in many tasks.
However, BERT is not linguistically motivated but devel-
oped with a concept of Cloze Task (Taylor, 1953).

Some people claim that natural language texts can be
processed and generated successfully only with the text
information by the success of NLP systems without lin-
guistic motivations. For instance, a deep learning textbook
introduces NLP as a field that does not require feature
engineering (Subramanian, 2018, p.75). In doing so, it
has often been postulated that the raw texts are enough to
build up the NLP systems with.

Meanwhile, Konstas et al. (2017) redefined natural
language generation (NLG) as a machine translation (MT)
task by training a model to parse to and generate from
Abstract Meaning Representation (AMR). In other words,
they built an MT model that translates AMR to natural
language text using a sequence-to-sequence model with
bidirectional LSTMs and Attention mechanisms.

While AMR formalism abstracts away the surface form
to represent human language sentences as a directed graph,
other formalisms contain richer information. Minimal Re-
cursion Semantics (MRS) formalism (Copestake et al.,
2005), for instance, contains rich information about the
surface form, including number, tense, and case infor-
mation (Konstas et al., 2017). Using this richer repre-
sentation, Hajdik et al. (2019) reproduced the work of
Konstas et al. (2017) and showed significant improve-
ment in translation when measured by the BLEU metric
(Papineni et al., 2002).

Konstas et al. (2017) and Hajdik et al. (2019) have their
own significance in that they demonstrate using the lin-
guistically motivated features works for a neural network-
based NLP task. The fact the linguistically richer rep-
resentation significantly improved the performance also
hints that linguistic features are still relevant when ap-
plied in a proper format. In other words, a proper use of
grammars like Head-Driven Phrase Structure Grammar
(HPSG), as in Hajdik et al. (2019), can improve NLP even
in this age of neural networks.

However, both studies used a bi-LSTM based sequence-
to-sequence model for the MT task. RNNs “learn” from

sequential data, such as natural language text divided by
token, through the back-propagation of the error to the
connected cells. In this process, the gradient information
is used to minimize the loss of the model. As this gradi-
ent is acquired by differentiation, the gradient of the old
cells vanishes, which impedes the RNNs from processing
longer sentences.

Later algorithms such as LSTM and GRU tried to by-
pass this problem by strategically “forgetting” some in-
formation. Meanwhile, Attention Mechanism helps a
sequence-to-sequence model to process longer sentences
by indicating which cells to “pay attention to”. Built
solely upon this mechanism, Transformer performed bet-
ter at MT tasks. Since MRS representation, linearized as
in Hajdik et al. (2019), tends to be long, it is expected that
applying Transformer would further improve the perfor-
mance.

In short, the current research aims to reproduce the
work of Hajdik et al. (2019) using Transformer to sub-
stantiate that computational grammar inspired by rich
syntactic and semantic formalism does improve neural
NLG. Along the line of the previous studies, the present
study draws more attention to the use of grammar-based
representation. In so doing, the present study aims to
demonstrate that Transformer-based NLG fits into the
MRS representation.

2 Method

2.1 Data

The suggested model uses the data from Hajdik et al.
(2019), which consists of gold and silver datasets and
are created with the HPSG motivation. The gold dataset
is the Redwoods Treebank (Oepen et al., 2004) release
1214. The Redwoods Treebank is a parallel corpus of nat-
ural language sentences and their MRS representations.
The latter was predicted using English Resource Gram-
mar (ERG; Flickinger, 2000), then manually checked by
human reviewers.

To accompany the gold dataset, one million sentences
from the Gigaword Corpus were prepared. Hajdik et al.
(2019) used ERG with ACE processor.1 ERG is a com-
putational grammar based on Pollard and Sag (1994) but
implements MRS without implementing binding theory
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(Flickinger, 2000). It guarantees the well-formedness of
the MRS representation. However, it is still capable of
producing incorrect MRS representation. Therefore, the
parser failed to parse 10.3% of the sentences, in which
case the sentence was discarded. In total, 87,679 sen-
tences were prepared as the gold and silver datasets.

In Hajdik et al. (2019), the MRS representations of the
sentences assumed with HPSG-based grammar of ERG
(#1 in Figure 1) were converted into Dependency MRS
(DMRS), which is interchangeable with MRS. The DMRS
representation is converted into PENMAN format follow-
ing Goodman (2018) (#2 in Figure 1), then linearized as
Konstas et al. (2017) (#3 in Figure 1) so that it can be fed
to a sequence-to-sequence model. They then anonymized
what is considered a named entity according to the MRS
representation by replacing the token on the raw text to re-
duce data sparsity. The NLTK implementation of Moses
tokenization (Bird et al., 2009) was used. This entire
data preparation process was done locally using the code
provided by Hajdik et al. (2019).

2.2 Model

As aforementioned Konstas et al. (2017) and Hajdik et al.
(2019) employed the bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) for their sequence-to-sequence
model. By contrast, the current work applies Transformer.
While the sequential nature of RNNs inherently brings
computational disadvantages, Transformer utilizes Atten-
tion mechanisms, which configure dependencies regard-
less of distance for more parallelization capability and
performance (Vaswani et al., 2017).

Transformer also performs relatively better than tradi-
tional RNNs with longer texts, offering a breakthrough
to machine translation systems. Thus, Transformer is
expected to solve the problem of long-range issue and
translation performance encountered in linearized MRS
representation.

2.3 Implementation and Evaluation

The present study utilizes OpenNMT-py (Klein et al.,
2017) in order to implement Transformer.2 Validation
was carried out every 5,000 steps. The model was saved
upon each validation. The training was carried out us-
ing Google Colab, which provides access to a robust
GPU environment but limits the execution up to 12 hours.
Therefore, training was conducted using the OpenNMT
feature to train from a saved model.

The test dataset was then translated with the trained
models, detokenized, and deanonymized as Hajdik et al.
(2019). Automatic evaluation of BLEU (Papineni et al.,
2002) was carried out using SACREBLEU (Post, 2018),
following Hajdik et al. (2019). During the translation,
beam search with the beam width of 5 was used. The
beam size and the BLEU calculation method we used

2Specifically, release v.2.0.0rc2 of OpenNMT-py was used.

Model BLEU

Konstas et al. (2017) 33.8
Hajdik et al. (2019) 77.17
Ours 64.2

Table 1: Comparison of the results.

here were determined in accordance with Hajdik et al.
(2019) to directly compare the result with their research
with minimal difference.

3 Results

3.1 The BLEU Score
BLEU is a metric for the automatic evaluation of machine
translation. The metric itself is not designed for NLG.
However, as Konstas et al. (2017) and Hajdik et al. (2019)
realized NLG systems based on MT approach, they used
this automatic metric to evaluate their NLG systems. The
current research also utilizes BLEU to evaluate the objec-
tive performance of the model.

Konstas et al. (2017) achieved up to 33.8 BLEU. Hajdik
et al. (2019) significantly improved the result to 77.17 for
the entire dataset, and 83.37 for partial dataset.

While Transformer was expected to further improve the
result by resolving the vanishing gradients issue, the result
turned out to be the opposite. We ran the Transformer for
up to 70,000 steps. Then, the BLEU score was measured
for every 5,000 steps. The score peaked at 30,000 steps
with 64.2 BLEU. The score decreased afterward with the
accuracy, perplexity, and cross entropy plateauing, hinting
the overfitting of the model after 30,000 steps.

3.2 Translation Samples
(1) a. PREDICTION: If I am correct, they will help you

understand exactly what it is saying the Linux
community of good software - and perhaps they
will help you become more productive yourself.

b. ANSWER: If I’m correct, they’ll help you under-
stand exactly what it is that makes the Linux com-
munity such a fountain of good software—and,
perhaps, they will help you become more pro-
ductive yourself.

The actual translation samples reveal the problem with
using Transformer. For the PREDICTION, we present deto-
kenized and deanonymized prediction by the model. This
corresponds to the model’s translation from the MRS rep-
resentation. The ANSWER is the original text the model is
supposed to translate to. Overall, the Transformer model
seems to perform relatively better with longer MRS rep-
resentations, as in (1).3

(2) a. PREDICTION: The myth and the sword.
3We used the 30,000 step model for the predictions here.



# ::id 1010
# ::snt The Cathedral and the Bazaar
(10000 / unknown

:lnk "<0:28>"
:sf PROP-OR-QUES
:tense UNTENSED
:mood INDICATIVE
:perf -
:ARG-NEQ (10004 / _and_c

:lnk "<14:17>"
:pers 3
:num PL
:L-INDEX-NEQ (10003 / _cathedral_n_1

:lnk "<4:13>"
:pers 3
:num SG
:ind +
:RSTR-H-of (10002 / _the_q

:lnk "<0:3>"))
:R-INDEX-NEQ (10006 / _bazaar_n_1

:lnk "<22:28>"
:pers 3
:num SG
:ind +
:RSTR-H-of (10005 / _the_q

:lnk "<18:21>"))))

#1

(￨_ unknown￨mood=INDICATIVE|perf=-|sf=PROP-OR-QUES 
ARG-NEQ￨_ (￨_ _and_c￨num=PL|pers=3 L-INDEX-NEQ￨_ 
(￨_ _cathedral_n_1￨ind=+|num=SG|pers=3 RSTR-H-of￨_ 
(￨_ _the_q￨_ )￨_ )￨_ R-INDEX-NEQ￨_ (￨_ 
_bazaar_n_1￨ind=+|num=SG|pers=3 RSTR-H-of￨_ (￨_ 
_the_q￨_ )￨_ )￨_ )￨_ )￨_

#2

#3

Example Sentence: 
“The Cathedral and the Bazaar”

Figure 1: MRS linearization process.

b. ANSWER: The Cathedral and the Bazaar

(|_ unknown|mood=INDICATIVE|perf=-|sf
=PROP-OR-QUES ARG-NEQ|_ (|_ _and_c
|num=PL|pers=3 L-INDEX-NEQ|_ (|_
_cathedral_n_1|ind=+|num=SG|pers=3
RSTR-H-of|_ (|_ _the_q|_ )|_ )|_
R-INDEX-NEQ|_ (|_ _bazaar_n_1|ind
=+|num=SG|pers=3 RSTR-H-of|_ (|_
_the_q|_ )|_ )|_ )|_ )|_

However, it turns out, the model struggles with the
seemingly simple task of lexical choices. For instance,
the linearized MRS given above seems straightforward.
The lexical items of the answer (2b) are all given in the
MRS representation. However, as can be seen with (2a),
it appears the model failed to catch the lexical item and
instead chose different items.

(3) a. PREDICTION: = = = Objectives = = =

b. ANSWER: Abstract

(|_ unknown|mood=indicative|perf=-|sf
=prop-or-ques arg-neq|_ (|_
_abstract_n_1|ind=+|num=sg|pers=3
)|_ )|_

The trend continues even with a single word sentence
(3). While the linearized MRS contains only a single
word, abstract, as given above, the model answered with
Objectives. This trend persists throughout the prediction:
while the syntactic structure appears to be translated rela-
tively well, it appears Transformer model failed to make
correct lexical decisions.

3.3 Error Analysis

(4) a. PREDICTION: do you want to travel around
what time ?

b. TARGET: around what time do you want to
travel ?

(5) a. PREDICTION: What am I doing now ?

b. TARGET: What do I do now ” ?

In order to understand the reasons for the lower per-
formance of this model, we manually inspected 100 ran-
domly selected translation samples. In detail, we compare
the anonymized and undetokenized predictions from the
30,000 step model. Each translation was categorized as:
no error, lexical choice error, syntactic error, punctua-
tion error, and missing elements error. Since some of the
grammatical information can be abstracted away, some
differences were not counted as errors. Those differences
are the location of adverbial phrases that do not alter the
meaning (see (4)), the use of aspect (present on behalf of
present progressive, or vice versa, like (5)), use of clitics
(will on behalf of ’ll), and unreasonable punctuations (sen-
tences that end with a quotation mark without opening
quotation mark, like (5)).

As Table 2 summarizes, around half of the translation
presented no error. This trend coincides with Hajdik et al.
(2019), in which manual inspection showed that BLEU
metric was underestimating the model due to the issues
like formatting. It appears then that, while the model
was generally able to generate acceptable sentences from



Error Number Sample Prediction

No Error 47 Okay , we have card0 options .
Lexical 31 I assume there is a full salon on the shipping costs .
Punctuation 8 : * named0
Lexical & Missing Argument 5 Don ’t Linger
Lexical & Syntactic 4 When ad dollars is tight , the high page cost is generally a major UN-

Kcontributor0 for UNKadvertisers0 who want to appear regularly in a
publication or not at all .

Missing Argument 3 Requesting immediately .
Syntactic 2 polite0 refund .
SUM 100

Table 2: Number of errors from the 100 translation samples. The errors in the sample prediction are marked in bold face.

linearized MRS representation, the details that are not
reflected in the representation prevented the model from
achieving a high score.

Among the erroneous 53 cases, 40 cases involved lex-
ical choice problems like (2) and (3). This supports our
assumption that the model learned to translate syntactic
aspect of MRS representation fairly well, but failed at
making correct lexical choices from it. We assume this
issue stems from Attention mechanism, on which Trans-
former is built. An MRS representation contains many
functional keywords and symbols while containing few
lexical tokens inside. Thus, it appears that the Attention
mechanism pays attention to functional keywords instead
of lexical items, thus failing to make a correct lexical
decision.

To further investigate this assumption, we retrieved
Attention weights from the translation of (2) using the
attn_debug option of OpenNMT-Py. The Attention
weight was then visualized in a heatmap using the Seaborn
package for Python. Here, the original sentence is pre-
sented on the horizontal axis, and the prediction tokens on
the vertical axis. A brighter color indicates stronger atten-
tion. The result (Figure 2) shows that when the tokens of
myth and sword were both expected to pay the strongest
attention to the lexical items of cathedral and bazaar, they
were instead paying attention to the functional items that
indicate the syntactic positions of the items.

4 Discussion

The current research reproduced Hajdik et al. (2019) with
Transformer. They showed that HPSG-based computation
grammar, such as ERG, can improve neural NLG. This re-
search takes that insight and applied a newer mechanism,
expecting the it would perform better at this specific task
by better processing longer sentences.

However, the result shows that Transformer model
struggles with this task. It appears that the model faile
extract lexical items from linearized MRS appropriately.
On the other hand, it could retrieve syntactic structure
from it. The full probe of this is beyond the scope of our

research. However, we suspect that relying on Attention
mechanism alone is harmful for the model to interpret the
linearized MRS representation.

MRS is a concise representation of the syntactic and
semantic information of the sentence. In other words,
each items of linearized MRS contain essential informa-
tion that determines the correct surface form. By using
Transformer it appears that our model paid attention to the
syntactic information of the linearized MRS, but not to the
individual lexical items. When the model pays attention
to a part of the input sentence, it can be interpreted that
the other parts are neglected. This ignorance of the lexical
items thus caused the poorer performance with Trans-
former even when the task was MT, where Transformer
generally shows better result.

The present study gives us two findings. First, it is
borne out that HPSG-based computational grammars in-
deed help neural NLG. Following Konstas et al. (2017)
and Hajdik et al. (2019), this research still shows that a
neural model can faithfully generate sentences in terms of
syntax from rich syntactic and semantic representations
such as MRS. Second, representations analyzed with a
grammar should be handled with care, particularly with
modern Attention-based approaches. Unlike natural lan-
guage texts, grammar-represented texts come with many
annotation symbols and few lexical items. This can cause
the Attention mechanism to pay less attention to the lexi-
cal items embedded in the grammar representation, as in
this study.

For future research, we plan to probe the model further
by using other test sets. Also, considering Attention mech-
anism’s internal disadvantage of ignoring lexical items,
other advanced RNNs that model hierarchical information
explicitly can be applied. Finally, one may adjust the At-
tention mechanism so that it can pay more attention to the
lexical items even when they are surrounded by grammar
information symbols.



Figure 2: The Attention weight for (2) visualized as a heat map. myth payed most of its attention to a functional item (the red
box), rather than the lexical word of cathedral (the blue box). Brighter color means higher attention weight. Lines are added by
the authors for illustration.
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